Leveraging term vectors

the successive searches, which is probably due to JVM warmup. These results
point out that performance testing is tricky business, but it's necessary in many
environments. Because of the strong effect your environment has on perfor
mance, we urge you to perform your own tests with your own environment. Per-
formance testing is covered in more detail in section 6.5, page 213

If you choose to expose searching through RMI in this manner, you'll likely
want to create a bit of infrastructure to coordinate and manage issues such as
closing an index arid how the server deals with index updates (remember, the
searcher sces a snapshot of the index and must be reopened to see changes)

Leveraging term vectors

Term vectors are a new feature in Lucene 1.4, but they aren't new as an inform:
tion retrieval concept. A ferm vector is 4 collection of term-frequency pairs. Most
of us probably can't envision vectors in hyperdimensional space, so for visualiza-
tion purposes, let's look at two documents that contain only the terms cat and
dog. These words appear various times in each document. Plotting the term fr
quencies of each document in X, ¥ coordinates looks something like figure 5.6,
What gets interesting with term vectors is the angle between them, as you'll see
in more detail in section 5.7.2 .

To enable term-vector storage, during indexing you enable the stere tern
vectors attribute on the desired fields. Field.Text and Field.unstored have
additional overloaded methods with a boolean storeTernvector flag in the signa-
tre. Setting this value o true turns on the optional term vector support for the

field, as we did fgr the subject field when indexing our book data (see

Figure 5.6 §
Term vectors for two documents
containing the terms cat and dog




CHAPTER §
Advanced search techniques

doc.add (Field.UnStored ("subject”, subject, true));

onable term vicors j

Figure 5.7 Enabling term vectors during indexing

Retrieving term vectors for a field in a given document by 1D requires a call to an
eader method:

Indexk

e .getTerne:

A rernereavector instance has several méthods for retrieving the vector infor
mation, primarily as matching arrays of strings and ints (the term value and
frequency in the field, respectively). You can use term vectors for some interest
ing effects, such as finding documents “like” a particu
example of latent semantic analysis. We built a BooksLikeThis feature as well as a
b proof-of-concept categorizer thit cai tell us the most appropriate category for a
new book, as you'll see in the following sections.

doctinent, which is an

5.7.1 Books like this .
Itwould be nice to offer other choices to the customers of our bookstore when
they're viewing a particular book. The alternatives should be related to the origi-
nal book, but associating alternatives manually would be labor-intensive and
would require ongoing effort to keep up to date. Instead, we use Lucene’s bool-

1 query capability and the information from one book to look up other books

wding books

e
that are similar. Listing 5.11 demonstrates a basic approach for
| like each one in our sample data

public static vold main(String(] args) throws I0Exception
tring indexbir = System.geteroperty(*index.dir*)
ey ai

Fenirac v
ESDizectory. getDirectory indexpir, false)

IndexReader reader = Indexkeader . open (4

BooksLikeThis blt = new BaoksLikeThis (reader)




Leveraging term vectors

der . docunent (1) ‘
ncin(doe. get (*titler)]

Look up books |
< blt.docstixe(i, 10, @ lke this

0
printin(* None like this')

erate over
every book
docs Jength; 3
-

)t

“Likerhisnoc. g

private Indexreader

raade
vate Indexsearch

Document doc = reader

4, int max) throws Ioxception (
= docurent (ia)
stringl]

oc . getvalues (*author*)
Booleanduery au(hnz”us‘v = new BooleanQuery (1
tine thors. length; 1+4) (

add (new TernQuery(new Term|author"
false)

rermFreavector (1,

subjecer)

Boctaunuery 1ikemhisuery + new sosiesnguery ;| 9 Coate ol
,;vahs)m/ ada(auchoriuery fatoe faise) ‘/ qwery
i e b st ik




188 | CHAPTERS
Advanced search techniques

/ se myselt 0 Exclude
LikeThisQuery.add (new TernQu ’ |/ current book
Tern(*isbn®, doc.aet 1) false, erue

/Systen.out .princlnl® Query: -
ket tostring("contents”))
ikeThisQuery)

ts.dength();

docsi] = hits.doc(
)
:
=

@ Asan example, we iterate over every book document in the index and find books
like each one.

@ Here we look up books that are like this one.

© Books by the same author are considered alike and are boosted so they will likely

appear before books by other authors.
| @ Using the terms from the subject term vectors, we add each to a boolean query.
3 @ We combine the-author and subject queries into a final boolean query.

t book, which would surely be the best match given the

@ We exclude the curre
other criteria, from consideration.
In @, we used a different way 1o get the value of the author field. It was indexed
as mulnpu fields, in the manner (shown in more detail in section 8.4, pa

inal author string is a.comma-separated list of author(s) of a book

author
¥ auchors

doc. ada(Fisla. Keyword (~author, authors(i]) thet

] The output is interesting, showing how our books are connected through author 5.7.2 What
and subject Each b

| A Modsin Art of Baucation is categ
‘ incat. placem
Inperial s £ Health and Longevity sible ca

decisior

Nome Like this




Leveraging term vectors

Tao Te Ching {8

ke this

Godel, Escher, Bach: an Eternal Golden Braid
None 1ike th

 Extreme Progranming S
> Java Development with Aat
Java Development with Ant
tromn rogramming Exvlained

The pragmatic programner
Developmant with ant

e pragnatic programmer
crene Progranning Explained

1f you'd like 10 see the actal query used for each, uncomment the output lines
toward the end of the docsLike

The books-like-this example could have been done without term vectors, and
we aren't really using them as vectors in this case. We've only used the conve-
nience of getting the terms for a given field. Without term vectors, the subject
field could have been reanalyzed or indexed such that individual subject terms
were added separately in order to get the list of terms for that field (sce section 8.4
for discussion of how the sample data was indexed). Our next example also uses
the frequency component to a term vector in a much more sophisticated manner

What category?

Each book in our index is given a single primary category: For example, this book
is categorized as "/technology/computers/programming”. The best category
placement for a new book may be relatively obvious, or (more likely) several pos-
sible categories may seem reasonable. You can use term vectors o automate the
decision. We've written a bit of code that builds a representative subject vector for




190

| CHAPTER S
Advanced search techniques

cach existing category. This representative, archetypical, vector is the sum of all
vectors for each document's subject field vector.

With these representative vectors precomputed, our end goal is a
that can, given some subject keywords for a new book, tell us what category is the

best fit. Our test case uses two example subject strings:

oublic void testCategorization() Scception

gecCategory (*extreme agile methodology’)

ag:
mentassori sducation philo:

)
The first assertion says that, based on our sample data, if a new book has
extreme agile methodology” keywords in its subject, the best category fit is

The best category is

“ftec
Gerermined by fnding the slosest
new book's subject

The test setUp ) builds vectors for cach category

sory angle-wise in vector space to the
gory ang] p:

55 CategorizerTest extends LisTescC:

public
map cace

brotected void sethp() throws Exception (

categoryMap = new Traeiap ():

Buildcategory! 50
e

)
walking every document in the index and

Our code builds category vectors by
sociated cat

0 single vector for the book's

aggregating book subject vectors i
egory. Category vectors are stored in a Map, keyed by caiegory name. The valuc of
each item in the category map is another map keyed by term, with the value an

nteger for its frequency

wa ToException (

ader .open (directory) ;

ate vold builacatesory
exiie ader - Indexs

A book
Tottap.
one anc

That was

involved a
mathemat
ure 5.6,
(as we've j
the maich

between



Leveraging term vectors 191

i€ (ireader. isDeleted(i)
Docurent doc = reader .docunent (3]
String category = doc.get(*category”)

category¥ap. put (c: v, vectoruap)

Termerequector termFrequector =
reader . getTermFrequector (1, *subject*)

addTemFreqToNap (vectortap, ternFraqvector)

)
Abook’s term frequency vector is added to its category vector in addrernere
Tomap. The arrays returned by getTerns () and getTexnérequencies () align with
one another such that the same position in each refers ta the same term:

brivate void addTernFreqToisp (Nap vectorap.
TermpreqVector cermreavector) (
String(] temms = ternFreqVector.getTerns
intl] fregs = termFrequector.getTernFrequencies ();
(ine 1 = 0; & < terms.lengthi ies) [
corns (1
oncainsKey (exn |
(Integer) vectormap.get (term)

new Integer (value. intvalue ()

w Integer (freqs(i

That was the easy part—building the category vector maps—because it only

involved addition. Computing angles between vectors, however, is more involved

In the simplest case, as shown carlier in fig-
ure 5.6, two categories (A and B) have unique term vectors based on aggregation
(as we've just done). The closest category, anglewise, to a new book's subjects is
the match we'll choose. Figure 5.8 shows the equation for computing an angle

between two vectors.




192 | CHAPTERS
| Advanced search techniques

Figure 5.8
Formula for computing the
‘angle batween two vectors

Our getcatego
between each category and the new book.
match, and the category name is returned:

ate getcatagory (string s

String(] words = subject.spli

Dou

ategory = null

ing category = (stris

double angle = computeAngle(words, category)
if (angle < bastangle) (

bostangle = angl

BestCatogory = category;

We assume that the subject string is in a whitespace-separated form and that
computation takes these assumptions
1y, computing the angle

cach word occurs only once. The ang
1t account to simplify a part of the computation. Fin

between an array of words and a specific category is done in conpus

shown in listing 5.12.

double
Foritap - (Map) categoryiap.get (cate:

teragle(String(] words,

0
0: 1 < words.length; i+s
int categoryroral

insKey (w

vectorap. co
categoryoraFreq =

((Integer) vectorMap.get fword) ) Jintvalue()

method loops through all categories, computing the angle
The smallest angle is the closest

yMap . keysat () iterator ()

valu
You

onin
inter
hibit

5.8 Sun

This

enabl

Ist
ways i
query




Summary

Gouble denominator @ Shorteut to prevent
rOfSquare s Lengen) precision issue

rotSquares

dotproduct / dencminatos

© The calculation is optimized with the assumption that each word in the words
array has a frequency of |

@ We multiply the square root of N by the square root of N is N. This shortcut pre-
vents a precision issue where the ratio could be greater than 1 (which is an illegal
value for the inverse cosine function).
You should be aware that computing term vector angles between two documents
o, in this case, between a document and an archetypical category, is computation-
intensive. It requires square-root and inverse cosine calculations and may be pro-
hibitive in high-volume indexes.

Summary

This chapter has covered some diverse ground, highlighting Lucene’s additional
built-in search features. Sorting is a dramatic new enhancement that gives you
control over the ordering of search results. The new Spanguery family leverages
term-position information for greater searching precision. Filters constrain doc-
ument search space, regardless of the query. Lucene includes support for multiple
(including parallel) and remote index searching, giving developers a head start
on disuibuted and scalable architectures. And finally, the new term vector feature
enables interesting effects, such as “like this” term vector angle calculations

Is this the end of the searching story? Not quite. Lucene also includes several
ways to extend its searching behavior, such as custom sorting, filtering, and
query expression parsing, which we cover in the following chapter






