
Prefix B-Trees

RUDOLF BAYER and KARL UNTERAUER

Technische Universitiit Miinchen

Two modifications of B-trees are described, simple prefix B-trees and prefix B-trees. Both
store only parts of keys, namely prefixes, in the index part of a B*-tree. In simple prefix B-
trees those prefixes are selected carefully to minimize their length. In prefix B-trees the pre-
fixes need not he fully stored, but are reconstructed as the tree is searched. Prefix B-trees are
designed to combine some of the advantages of B-trees, digital search trees, and key compres-
sion techniques while reducing the processing overhead of compression techniques.

Key Words and Phrases: B-trees, key compression, multiway search trees
CR Categories: 3.73, 3.74

1. SIMPLE PREFIX B-TREES

We assume that the reader is familiar with B-trees [4, 81 and with a variation of
B-trees, called B*-trees [8, lo]. In B*-trees the records of a file together with the
keys identifying them are only stored in leaf nodes of the tree structure. We call
the nonleaves branch nodes or branch pages. Leaves can be linked to their neigh-
bors to allow sequential processing of the leaves without using the branch nodes of
the B*-tree.

We call the part of a B*-tree consisting only of the branch nodes the B*-index
and the ordered set of leaves the B*-file. In the B*-index some keys, which appear
again in the B*-file with their associated records, are repeated without their records.
The following observation is important for the rest of this paper: The keys stored
in the B*-index are only used to direct the search algorithm and to determine in
which subtree of a given branch node a key and its associated record will be found,
if they are in the tree at all.

It is now a fairly obvious observation that we need not necessarily use the keys
in the B*-file to construct the B*-index. Instead we can use other strings, con-
structed to have desired properties, for building up the equivalent of the B*-index
of a B*-tree.

To give a simple example, we assume that a leaf is already full and contains
keys

Copyright @ 1977, Association for Computing Machinery, Inc. General permission to re-
publish, but not for profit, all or part of this material is granted provided that ACM’s copy-
right notice is given and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the Association for Corn:
puting Machinery.
Most of the research reported in this paper was performed while the first author was visiting
at IBM&search Laboratory, San Jose, CA 95193. The research of the second author was sup-
ported by the Sonderforschungsbereich 49-Elektronische Rechenanlagen und Informa-
tionsverarbeitung-of the Deutsche Forschungsgemeinschaft.
Authors’ address: Institut fiir Informatik der Technischen Universitiit Munchen, Arcisstrasse
21, D-3999 Mtinchen 2, West Germany.

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977, Pages 11-26.

12 l R. Bayer and K. Unterauer

Bigbird, Burt, Cookiemonster, Ernie, Snuffleopogus

In order to insert the key “Grouch” with its record, we must split this leaf into
two as follows:

Bigbird, Burt, Cookiemonster Ernie, Grouch, Snuffleopogus

Instead of storing the key “Ernie” in the index, it obviously suffices to use one of
the one-letter strings “D”, “E” for the same purpose. In general we can select
any string s with the property

Cookiemonster < s 5 Ernie (1)

and store it in the index part to separate the two nodes. We call such a string s
a separator (between Cookiemonster and Ernie). It seems prudent to choose one
of the shortest separators.

Note. If the keys are words over some alphabet and the ordering of the keys is
the alphabetic order, then the following property, called the pre$x property, holds:

Let x and y be any two keys such that x < y. Then there is a unique prefix g of
y such that (a) g is a separator between x and y, and (b) no other separator
between x and y is shorter than g. For the rest of this paper, we assume that the
prefix property holds.

The technique of moving a shortest separator to the father node when a node is
being split can be used only for splitting leaves, not branch nodes. When a branch
node is being split, one of the separators on that node must be moved up one
level in the tree.

As mentioned before, a B*-tree can be considered as consisting of a B*-index and
a B*-file. The B*-index itself is just a conventional B-tree of a subset of the keys
in the B*-file together with the maintenance algorithms for B-trees described in [4].

DeJinition. A simple prefix B-tree is a B*-tree in which the B*-index is replaced
by a B-tree of (variable length) separators.

Note. Since a key in a B*-index is also a separator, although not necessarily a
shortest possible separator, the class of simple prefix B-trees contains the class of
B*-trees.

Except for the slight complication of always having variable length separators,
the search algorithm for simple prefix B-trees is exactly the same as for B*-trees.

Split interval. The performance bottleneck of our trees is the number of ac-
cesses to the backup store needed for INSERT, DELETE, and RETRIEVE
operations. This number is essentially determined by the height of the tree since
the pages along the retrieval path for some key x from the root to some leaf are
always needed for those three operations.

Performance can therefore be improved by making the trees as flat as possible,
which can be achieved by making the branching degree of the nodes, especially
in the upper parts of the tree (i.e. near the root), as high as possible. This branch-
ing degree is determined by the number of (separator, pointer) pairs that can be
stored on a fixed size page. Pointers are generally rather short and have a fixed

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

Prefix B-Trees l 13

size of a few bytes. Keys, however, tend to be rather long. The branching degree
can therefore be increased by decreasing the length of the separators. This essen-
tially is the rationale for storing only shortest separators instead of full keys in
the index part of a simple prefix B-tree.

This idea can now be carried one step further if we do not insist on splitting a
leaf precisely in the middle. Instead we could allow a certain split interval around
the middle (or the median key) of a splitting leaf within which a split point (be-
tween two adjacent keys xi-l and xi) should be chosen so as to minimize the length
of the shortest separator si . Note that because of the prefix property the resulting
separator si can still be chosen as a prefix of the key zi . The size of the split inter-
val is determined by a parameter UZ . gz is simply the number of separators (or
bytes) around the middle of the page which we consider for choosing a suitable
split point.

The same idea can be applied to splitting branch nodes. A certain interval of
size Ub around the middle of a page is considered for choosing a split point such
that a shortest separator within this interval is moved to the father page.

Effect of ~1 and Ub . An increase of uz should decrease the average length of the
separators in the index part of the tree, thereby reducing the number of nodes in
the index part. An increase of Ug should favor the shorter separators in the index to
be located near the root, thereby increasing the branching degree of nodes near the
root, where a high branching degree is most beneficial.

Increasing both (rl and C7b causes two effects working against each other:
(a) It tends to decrease the height of the index part for the reasons just de-

scribed.
(b) The storage utilization decreases (there can now be pages less than half

full), which requires more pages in the file part and more but shorter entries in
the index part of a tree.

We have not analyzed the influence of uz or Ub on the performance of the trees.
We expect such an analysis to be quite involved and difficult. We are quite con-
fident, however, that small split intervals improve performance considerably.
Sets of keys that arise in practical applications are often far from random, and
clusters of similar keys differing only in the last few letters (e.g. plural forms) are
quite common.

As an example, consider the key sequence

“On, Part, Problem, Problems, Solution, Solutions”

arising in the tree of Figure 1. Splitting this sequence in the rr-ddle between the
third and fourth key would yield “Problems” as the shortest separator. Allowing a
split point to be chosen one key to the left or to the right yields “Pr” or “S’ as
separators. The split point between “Problems” and ‘Solution” yields the shortest
separator “S”, which is a prefix of the full key “Solution” and appears in the tree
of Figure 1.

2. ALGORITHMS FOR SIMPLE PREFIX B-TREES

2.1 Search Algorithm

This algorithm is the same as for B*-trees with variable length keys.

ACM Transactions on Datsbsse Systems, Vol. 2, No. 1, March 1977.

14 l R. Bayer and K. Unterauer

ACM Transactions on Database Systems, Vol. 2, NO. 1, March 1977.

Prefix B-Trees l 15

2.2 Sequential Processing

This is very easy and efficient using either the index or the linked list of the leaves.

2.3 Insertion

An important part of the insertion algorithm is the search algorithm to determine
the leaf on which the insertion must be performed. If this leaf must be split, choose
within the split interval a split point yielding the shortest separator s, which as
we know can be chosen to be a prefix of a key. Insert s into the index part, propa-
gating splits toward the root if necessary. To split a branch node choose again a
shortest separator within the split interval and move it to the father node.

2.4 Deletion

Deletion of a key and its associated record is always made from a leaf. Unless a

merge or an underflow [4] of the leaf is required, the index part of the tree need
not be affected by deletions. Thus deletions are simpler than in the original B-trees.
If the deletion causes two leaves to be merged, simply delete the corresponding
separator from the index part. This will always be a deletion from a leaf of the index
part, which is organized as a B-tree. Thus these deletions are special cases and
much simpler than general deletions from B-trees. Other separators in the index
part of the tree are not affected by such a deletion.

Note. If the largest or the smallest key on a leaf is deleted, then a separator in
the index part might be replaced by a shorter separator. Although this can easily
be done, it is hardly worthwhile.

2.5 Overflow

So far we have disregarded overflows caused by insertions or deletions (where they
are sometimes called underflows [4]). An overflow is performed by moving keys and
records or separators from a node to a brother node in order to avoid splits or to
balance storage utilization. Using variable length separators instead of fixed length
keys means, however, that during an overflow a separator in the father page may
be replaced by either a longer or a shorter separator. Obviously split intervals
should also be applied to overflows.

As opposed to the original B-tree proposal based on fixed length keys, overflows
may now propagate and cause further splits, merges, or overflows if a separator is
replaced by a longer or shorter separator. Obviously such propagation will be in-
frequent.

Note. Rear compression of keys, described in [8] and [9], is a technique similar
to using shortest prefixes. Rear compression, however, does not use the important
device (see Section 3) of the split interval.

3. EXAMPLE OF A SIMPLE PREFIX B-TREE

To construct an example of a simple prefix B-tree, the keys of the KWIC index
[8, p. 4371 were inserted into the tree in the following random order: part, their,
solve, for, to, an, some, certain, new, equations, problems, on, methods, as, ob-
taining, a, its, solutions, use, notes, by, computation, in, of, problem, from, note,
and, solution, which, with, method, computations, the, equation.

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

16 l R. Bayer and K. Unterauer

The nodes are assumed to be able to hold up to two keys or separators and up
to three pointers. When a leaf becomes too full, i.e. contains exactly three keys, a
split after the first or second key is allowed to get the shortest separator. Branch
nodes are split by moving the middle separator to the father. Thus our example
demonstrates only the effect of the split interval on leaves; it ignores the interplay
among a fixed page size for a node, the variable length separators, and the resulting
variable branching degrees of the branch nodes. After inserting all keys, we obtain
the tree of Figure 1.

The following observations can be made about our example. Any actual data will
not quite satisfy the assumptions made for the analysis of simple prefix B-trees:
that the keys are chosen at random. Thus the average length of a shortest sepa-
rator for our set of key words is 2.88 rather than 1.47 as would be expected for
random keys (see Section 6). This is due to the obvious phenomenon of several
nouns appearing both in singular and plural forms. The long plural forms appear
necessarily in the set of shortest separators. Our proposal of choosing a split point
within a certain interval almost compensated for this effect, yielding an average
length of 1.54 for the separators actually appearing in the index part of the tree.
This is in good agreement with the expected length of 1.47.

As mentioned before, the influence of the size of the split interval on the length
of separators is an open problem. We conjecture that the main benefits of the scheme
can be obtained by a rather small interval. This means that the good storage utili-
zation of B-trees in general will not be degraded appreciably.

4. PREFIX B-TREES

In this section we describe a modification of simple prefix B-trees with the goal of
further reducing the size, mainly the height of the index part, of such trees. As-
sume that the ordering of the keys is the lexicographical order according to the
collating sequence of the alphabet over which the keys are defined.

For an arbitrary page P, let T(P) be the subtree of index and leaf pages with root
P. Reconsider the index part of a simple prefix B-tree. The tree structure determines
for each page P a largest lower bound A(P) and a smallest upper bound r(P)
such that, for all keys z or separators s which are or might be stored in T(P), the
following holds :

qp) 5 2, < P(P), qp> 5 s < /4P).

Let lo be the smallest letter in the alphabet and let co be larger than any letter:

X(R)=Zo, p(R)= w.

To define X and cc for other nodes, let P be a branch node with lower and upper
bounds A(P) and p(P), respectively, and the following structure:

P: PO, SI, PI,. . . , Si, pi, Si+l,. . (9 Sm, Pm

PO * * * p, are pointers to the sons of P which are branch or leaf nodes; sl. . , s,,,
are separators, s,,, being the last one on P. Then X(P(p,)) and p(P(pi)), also

ACM Transactions on Database Systems, Vol. 2. No. 1, March 1977.

Prefix B-Trees l 17

denoted by X(pi> and p(pi) , are defined as :

1

56
X(pi> =

for i = 1, 2, . , . , m,
P(Pi> =

i

si+l for i = 0, 1, . . . , m - 1,

X(P) for i = 0, p(P) for i = m.

Then obviously all separators or keys in T(pi) must have at least a common
prefix K(pi), which can be defined as follows: Let z be the longest common prefix
(possibly the empty string) of X(pi) and p(pi). Then

[KZi if h(pJ = ?&z and I = zZj+r, where z is an arbitrary

K(pi) =

I

string and the letter Zj+r follows Zj immediately in the col-
Ming sequence,

z otherwise.

X(pi) and p(pi), and therefore also K(Pi), can be derived by traversing the tree
from the root to the node P(pi). Therefore there is no need to repeatedly store
the common prefix K(p;) in P(pi); it suffices to store it once and to store the rest
d of the separators on P(p;). This holds even for the keys on leaves, although
storage of full keys on leaves or at least the repetition of the common prefix on the
leaves is desirable for sequential processing of the file without the use of the index
part. A full separator s on P(p,) is easily reconstructed by the concatenation s =
K(pi)g.

For example consider the tree in Figure 1. All the keys in the subtree with the
root containing “To” have the common prefix “T”. This common prefix can be
derived according to the above definitions when the father node which contains
the pair (T, u) is examined. Therefore in a prefix B-tree we would not store the
common prefix T with the separators in the subtree.

Using this prefix compression technique yields a new kind of tree which we call
prejix B-tree. We present another explicit definition of prefix B-trees in Section 5
after discussing the maintenance algorithms.

As mentioned before, we hope that prefix B-trees combine some of the advantages
of B-trees, digital search trees, and key compression without sacrificing the basic
simplicity of B-trees and the associated algorithms and without inheriting some of
the disadvantages of digital search trees and key compression techniques. To sub-
stantiate these claims, let us first consider the algorithms for processing prefix
B-trees.

5. ALGORITHMS FOR PREFIX B-TREES

5.1 Searching

To search for a key x on a page referenced by p:

(1) Determine K(P) according to its definition in Section 4.
(2) Remove K(P) from 5, yielding 2.
(3) Let page P(p) be organized as follows:

po*l,p,*bzp2* . . . *smp,*

if i < & then q := po;
if & 5 2 < %<+I then q := pi;
if I, 5 2 then q := p,;

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

18 l R. Bayer and K. Unterauer

(4) if P(p) is a leaf page, then retrieve the record q is referencing; it has key x if there is
such a record at all

else begin p := p; goto step (1) end

Comments on the search algorithm.
Step (1): If 2 can be in T(P(p)) at all, it must have the prefix K(p). The same

prefix K(P) was removed from the full separators si to obtain the partial separators
dj stored on P(p). Therefore to search P(p) use 2 as a search argument and com-
pare 2 with the dj on P(p).

Step (3) : Let * be a special symbol which cannot appear in 6j or pj . Even though
the partial separators dj have variable length, a calculated or binary search is still
possible. We describe the binary search: Start the search in the middle of the used
part of the page. With a short sequential character scan locate two neighboring
* symbols. Since the pj have fixed length, we can determine bj , which is used for
comparison. The iteration and termination of the scheme on one page is obvious.

Step (4) : For simplicity we assumed that only pointers to the records are stored
on the leaf pages.

When proceeding from P to a son page P’, it is easy to construct X(P’), p(P’),
and K(P’) and to iterate the search process. It is now clear that prefix B-trees
avoid the main disadvantages of other compression techniques, namely the need
to either decompress the keys on P first or to change the search argument to be
used for comparison with each search step and to rely on additional structure in-
formation [9] to allow a faster than sequential, e.g. a quadratic, search of P. The
way the prefixes K(P) are constructed is very reminiscent of the way of construct-
ing prefixes in traversing digital search trees.

5.2 Insertion

A significant part of the process of inserting a record (2, a) with key z and associ-
ated information a is the search algorithm just described. In most cases, (2, a)
will simply be inserted into a leaf and the insertion process is completed.

Node splitting. When a node P splits into P and P”, a separator s must be se-
lected and a partial separator b must be inserted into the father page & of the
splitting page P. The prefix for the father page, i.e. K(&), satisfies the property
that K(Q) is a prefix of s. Thus s = K(&)$, and the partial separator ji can be in-
serted into & without affecting any other separators on &. The partial separators
on P and PN may now be shortened in case the new K(P) and K(P”) are longer
than the old K(P) was. Similarly as for the original B-trees, splits may propagate
toward the root and trigger further splits or overflows.

Overjlow. Instead of splitting a full page P, an overflow from P into a brother
page B can be attempted. Then the separator s between P and B must be replaced
by another separator t, and accordingly 1 on the common father & must be replaced
by t^.

In this process the partial separators on P may shrink; those on B may expand.
Therefore an overflow to B may not be possible even though B is not full. In this
case P should be split. Replacing B by i may force further splits, merges, or over-
flows. This effect is analogous to the one already observed for simple prefix B-trees.

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

Prefix &Trees l 19

5.3 Deletion

Deletion of (2, a) will always be done on a leaf. If CC is the first or the last key on a
leaf, then the separator to the left or right brother, part of which is stored in the
index part, might be shortened. But this is not necessary, since the longer separator
will still remain a separator.

Node merging. Owing to the deletion of (CC, a) from a leaf F, F might now be
merged with a brother G. To merge F and G onto F, remove the corresponding
partial separator from the father of F. This might trigger further merges or over-
flows. To merge branch nodes Q and B onto Q, delete the partial separator between
Q and B on their common father node and recalculate the old and new partial
separators on Q since they might expand. Obviously the condition for merging Q
and B is that the expanded partial separators still fit onto Q.

With the discussion in the preceding sections, we have given a constructive
definition of prefix B-trees: Prefix B-trees are exactly those trees that arise from
applying arbitrary sequences of INSERT and DELETE operations to an empty
file.

It may be helpful to present an explicit definition of prefix B-trees, defining pre-
cisely those properties which allow us to distinguish this kind of tree from other
tree structures. This definition is rather difficult to grasp, however, without first
understanding the discussion in the preceding sections and the constructive defini-
tion.

Definition. A pre$x B-tree is a B*-tree in which the B*-index is replaced by the
index part of a prefix B-tree.

Definition. The index part of a pre$x B-tree is a directed tree structure together
with a particular mode organization and additional properties as follows:

(a) Tree structure: (i) The tree is completely balanced with respect to path
length. (ii) The degree cl of a node is variable; d 2 2, but otherwise d is determined
by the internal organization of a node.

(b) Node organization: A node P contains an alternating sequence of references
Pi to other nodes (the sons of P in the tree structure) and partial separators di ,
which are variable length strings over some alphabet. The subsequence of partial
separators is sorted. Denote the alternating sequence in a node as p. , dl , pl , $2 ,
p2, * * * ,4n , pm *

(c) Additional properties: For every node p the following holds:
(i) Let the common prefix K(P) of P be as defined before. Then

si = K(P)& for i = 1, 2,. . . , m

are called the separators of P.
(ii) Let T(P(p;)) be the maximal subtree with root P(p,). Let I be the

set of all separators of nodes of T(P(pi)) and of all keys on nodes of the B*-file
referenced from leaves of T(P(pi)). Then the following hold:

WY E ‘+‘o) : y < S1 ,

ffy E I : Si 5 y < Si+l for i = 1, 2, . . . , m - 1,

vy E K(Pm) :&n 5 ‘$4.

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

20 l R. Bayer and K. Unterauer

(iii) If every node has a fixed storage capacity, the storage occupancy is so
high that no two brothers can be merged.

We have claimed that prefix B-trees should combine some of the advantages of
B-trees, digital search trees, and compression techniques without inheriting some
of their less desirable properties. More precisely we mean the following:

(1) The basic advantages of B-trees are preserved:
-a balanced tree organization guaranteeing good worst-case performance,
-good storage utilization,
-maintenance algorithms which are only slightly more complicated than those

for original B-trees with various length keys.
(2) The technique of choosing shortest separators and pruning off the common

prefixes K(P) allows storing only partial separators in the index part of the tree.
The two techniques could be applied independently to a B*-tree. Choosing shortest
separators is reminiscent of rear compression, and pruning off common prefixes
is reminiscent of front compression of keys. However, the main disadvantages of
other compression techniques are avoided.

(3) The technique of constructing prefixes while traversing the tree during a
search is reminiscent of digital search trees. However, the danger of obtaining un-
balanced trees is avoided.

Note. In certain cases, especially when insertions and deletions are fairly rare,
it may be desirable to factor out the largest common prefix of the keys or separators
actually stored in a node P instead of pruning off only K(P). Binary search of a
page would still be possible. The advantage is additional storage saving; the dis-
advantage is additional processing required for some insertions or deletions which
may alter the longest common prefix and therefore also the partial separators on a
page.

Note. Recently some research has been done on performing concurrent opera-
tions on B-trees [6] and on enciphering B-trees [5]. All these results can be extended
in a rather obvious way to apply to simple prefix B-trees and to prefix B-trees.

6. PERFORMANCE ANALYSIS OF SIMPLE PREFIX B-TREES

In Section 2 we have discussed why the performance of our trees depends heavily
on the length of the separators stored in the B*-index. In this section we therefore
attempt an approximate analysis of the expected length of the separators in a
simple prefix B-tree.

We restrict the analysis to a file with fixed length keys, but we see no reason why
the results for variable length keys should be significantly different. We do take
into account of course that we get variable length separators, but we do not con-
sider the influence of the split intervals. For some comments on the general influence
of the split interval, see Section 2 and the example in Section 3.

For our analysis we assume that the keys in the B*-file are random. In practical
applications this is often no&he case, and it leads to a longer expected separator
length if one considers a set S of separators containing exactly one shortest sepa-
rator sj for each consecutive key pair (Zj-1 , zj) in the sorted file. But only a rather
small subset of S actually appears in the index part, and the technique of using
the split interval for leaf splitting has the effect of selecting mostly the short sepa-

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

Prefix B-Trees l 21

rators in S to be used as separators in the index part. We assume that the split
interval roughly compensates for the nonrandomness of the keys of actual files
and that the expected length of the separators in S is a useful first-order approxi-
mation for the separator length to be expected in practical applications in the in-
dex part of prefix B-trees.

Let 21, x2 , . . . , x,+1 be the keys of a file in lexicographical order, and let a be
the empty word. Then the intervals (e, ~11, (21, ~1, . . . , (xi , xi+J, . . . , (x,-l , CC]
are called the gaps of the file. A file of cardinality n - 1 defines n gaps. We say
that s is a separator for the gap (rj , xi+J or s is a separator between xj and rj+i
or s fills the gap (xi , xj+l] iff xi < s 5 x,+1 .

Note. Each nonempty string is a separator for a unique gap defined by a file.
For each gap there are one or several shortest separators. Choosing a shortest
separator for each gap yields the set S mentioned before.

Assume that we have a set of n gaps and a set of m separators. If we assume that
a separator fills a gap with probability l/n, then the probability that a particular
gap is not filled by any of the m separators is (1 - l/n)“. Thus the expected num-
ber of gaps filled by m separators is

w(n, m) = 72 - n(1 - l/n)“.

Let the alphabet over which keys are formed have cardinality (Y. Then there are
exactly (Y’ strings of length 1. For a file of cardinality n - 1, let wi be the expected
number of gaps of the file filled by the set of cyi separators of length exactly i. Then

wi = w(n, ai) for i = 1, 2,

Note. Let L be the fixed length of the keys of the file. Then each gap filled by a
separator of length i will also be filled by separators of length i + 1, i + 2, . . . , L.
For example, the gap (Part, Prob] can be filled by “Pb”, “Pba”, “Pbaa” and also
by “Pr “, “Pro “, “Prob” of lengths 2, 3, 4.

Let I be the expected number of gaps actually filled by a separator of length i
when the shortest possible separators are chosen. Then there will be ~1 = o1 gaps
filled by separators of length 1, v2 = w2 - vl gaps filled by separators of length 2,
and in general vl = ~1 - CtZ: vi, 1 = 2,3, . . . gaps filled by separators of length 1.

Since we have fixed length keys, each gap will eventually be filled by a separator
of length at most L, and the expected length E(s) of a shortest separator to fill a
gap should be approximately

E(s) = l/n 2 In.
1-l

LEMMA 6.1. VI = WI - W&l for 1 = 2) 3)
PROOF. This follows directly from

wz = g vi -

Using E(s) = (l/n)~ko Zvl, VM = wz - wlml, and wz = w(n, a’) =
n[l - (1 - l/n)““], we easily see that

L-l

E(s) = 1 + lq (1 - l/n)“, - L(1 - l/n)“L.

ACM Tmnssctione on Database Systems, Vol. 2, No. 1, March 1977.

22 l R. Bayer and K. Unterauer

Table I. Expected Length of Separators in the Index Part of a Simple Prefix B-Tree

a = cardinality of alphabet; n = cardinality of file.

n

a 103 104 10’ 106 10’ 108

2 9.634 12.955 16,277 19.599 22.921 26.243
8 3.546 4.645 5.747 6.855 7.968 9.083

10 3.263 4.262 5.262 6.262 7.262 8.262
’ 16 2.775 3.638 4.476 5.283 6.080 6.903

26 2.483 3.104 3.842 4.615 5.258 5.929
36 2.238 2.884 3.614 4.140 4.843 5.529

256 1.774 1.976 2.517 2.936 3.180 3.845

For the following numerical examples the approximation
L-l

E(s) = 1 + ls (1 - l/n)”

was used. Furthermore it was assumed that (Ye >> n. This means that the long
separators do not significantly contribute to E(s) and that E(s) becomes nearly,
i.e. within the accuracy calculated, independent of L. Table I presents E(s) for a
large range of alphabet sizes CY and file sizes n.

7. HEIGHT OF A SIMPLE PREFIX B-TREE

According to [4], the minimal and maximal number of entries in a B-tree are

I * min = 2(k + l)h-’ - 1, Imax = (2k + l)h - 1.

We want to compare the number of keys or separators that can be stored in the
index part-which is a B-tree-of a B*-tree or a simple prefix B-tree for a fixed
page size and a given height.

In [41 Imin and Imax were calculated for k = 60 and for experiments with an
entry that required 14 bytes, e.g. 10 bytes for the key and 4 bytes for the page
pointers, yielding a page size of 1684 bytes.

Using full bytes for the symbols of the alphabet (a = 256), we see (Table I)
that the expected length of a separator up to a file size 10’ is less than 4. Thus let
us assume pessimistically that a separator requires 4 bytes. Then a half-full page
will have lc = 105 entries, a full page 210 entries. We also calculate an average I,,
assuming that each page is three-quarters full and contains 157 entries. (See Table
II.)

8. PERFORMANCE OF PREFIX B-TREES

It seems quite difficult to give a precise analysis of the expected length of the
common prefixes K(P~) defined in Section 4 or equivalently of the amount of storage
space that can be saved by using prefix B-trees rather than simple prefix B-trees,
In [7] a rather crude worst-case analysis is carried out to obtain a lower bound on
the expected length of the common prefix I. We omit the analysis here, but

ACM Transsctions on Database Systems, Vol. 2, No. 1, March 1977.

Prefix B-Trees l 23

Table II. Comparison of B*-Trees and Simple Prefix B-Trees

Page size = 1684 bytes.

h Imin I B” I m* Imin Z c&Y Z max

1 1 90 120 1 157 210
2 121 8280 14640 211 24963 44520
3 7441 753570 1771560 22471 3944311 9393930

.
Y

\
1

B*-tree Simple prefix B-tree
Key : 10 bytes Separator: 4 bytes
Page pointer: 4 bytes Page pointer : 4 bytes

Table III. Expected Length of the Common Prefix

I

k 103 10’ 106 106

2
10

100
1000

2
10

100
1000

2
10

100
1000

7.60 10.36
4.80 7.99
1.90 4.80

0 1.90

0.95
0.75

0
0

0.49
0
0
0

1.86
1.30
0.75

0

0.95
0.75

0
0

13.69 16.95
11.36 14.69

7.99 11.36 a=2

4.80 7.99

2.63 3.05

1.93 2.82
1.30 1.93 a! 26 =

0.75 1.30 1

0.99 1.87

0.97 1.34
= 0.75 0.97

0 0.75 3

a 256

present the results for a representative collection of file sizes, typical page sizes,
and alphabet sizes in tabular form. Although these results are probably poor lower
bounds, they should be helpful design guidelines for the practitioner.

Table III gives lower bounds (arrived at in [7]) for the expected value of the
length of the removable common prefix K(P). The parameters should be inter-
preted as follows:

LY: size of the alphabet.
I: size of the separator set stored in the index part. (More precisely, I is only the

size of the separator set stored in the leaf pages of the index part, but for
typical applications this is within 1 percent of the total size of the index part.)

k: average number of partial separators stored on an index page. A crude esti-
mate of k suffices for using the table.

9. PREFIX B-TREES AND DENSE INDEXES

Frequently a file for which an index must be built is not sorted according to the
order of the keys being used for the index. In this case each key in the file must

.4CM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

24 . R. Bayer and K. Unterauer

also appear in the index. Such indexes are often called “dense indexes” or “sec-
ondary indexes” for obvious reasons.

It is interesting to observe now that for dense indexes it suffices to always store
separators of two successive secondary keys in the index instead of full keys. As-
sume for example that the successive secondary keys on a leaf of the index would
be . * * xi-1) xi) xi+1 * * . with pointers . - . Q;-1, qi , qi+l . . . to the actual records.
It is assumed of course that the secondary keys are stored again with the records.
NOW assume that we construct separators sj with the property

Then it suffices to construct the secondary index with the leaf pages containing
only the separators rather than the full keys. The organization of a leaf page could
then be

* * * Qi-2) Si-1) Qi-1) Si) qi) Si+l) Qi+l . * * *

Searching. To search for a record with key y between xi and xi+1 , i.e. xi < y
< Xi+1) search the index of separators. This will yield si 2 y < s<+~ and lead to the
pointer qi in the index. Then retrieve the record referenced by q; and compare its
secondary key with y. In case of equality we have found and retrieved the proper
record; in case of inequality there is no record with the secondary key y in the file.

Updating. To perform an update, e.g. to insert a record with key y between
xi and xi+1 , construct a separator sil with the property

Si I Xi < Si’ 5 y < Si+l 5 Xi+1 *

If Si is liot a prefix of y, then it is obviously possible to construct sl without re-
trieving x; ; otherwise 2; must first be retrieved to construct s[.

Deletion of a record works analogously.
The expected length of separators in a dense (n z 1) index for a file of size n

and the lower bounds-derived in Section G-for the length of the removable
common prefixes can now be used to get an estimate for the number of characters
per key to be stored in the index. We imply subtract the lower bound for the length
of the removable prefix in Table III from the expected length of the separator in
Table I and obtain an upper bound for the expected length of the partial sepa-
rators. Table IV contains those values for some representative parameters for
prefix B-trees.

10. EXPERIMENTAL RESULTS

Simple prefix B-trees and prefix B-trees have been implemented to compare their
performance against the performance of B*-trees [l]. The main results concern
computing time and saving of disk accesses.

Computing time. The time to perform the algorithms for simple prefix B-trees
is nearly identical to the time for B”-trees. Prefix B-trees need 50-100 percent
more time. Considering the algorithms, this is unexpected, and we have, at the
moment, no satisfactory explanation for this phenomenon.

Saving of disk accesses. For trees having no more than 200 pages no saving is
achieved. For trees having between 400 and 800 pages, simple prefix B-trees re-

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

Prefix B-Trees l 25

Table IV. Length of Partial Separators in a Prefix B-Tree

a = size of alphabet; k = average number of entries stored in a node; Z =
n = size of file and dense index.

k 103 10’ 10’ 106

2
10

100
1000

2
10

loo
1000

2
10

100
1000

2.63 2.60
4.83 4.97
7.73 8.16
9.63 11.06

1.53 1.24
1.73 1.80
2.48 2.35
2.48 3.10

1.28 1.03
1.77 1.23
1.77 1.98
1.77 1.98

2.59 2.65
4.92 4.91 8.29 8.24 a=2

11.48 11.61 t

1.21 1.57
1.91 1.80 a = 2.54 2.69 26

3.09 3.32)

1.53 1.07 1
1.55 1.60
1.77 1.97 a = 256

2.52 2.19

Table V. Experimental Results
B = i*-tree; SPB = simple prefix B-tree; PB = prefix B-tree; n = cardinality of file;

k = narameter as used in 141: I = maximal length of keys.

n: 1000 x 5000 16000

K: 30 20 10 30 20 10 30 20 10

Number of pages: <SO <80 <80 ~125 2200 ~380 my230 ~380 my760

Computing time, set
B,Z= 9

SPB, 1 = 9
PB, 1 = 9

B, 2 = 15
SPB, 1 = 15

PB, 1 = 15
Disk accesses

B,l= 9
SPB, 1 = 9

PB,l= 9
B, 1 = 15

SPB, 1 = 15
PB, 1 = 15

Length of separators
SPB, 1 = 9
SPB, I = 15
Theoretical value

Compression factor
Measured
Theoretical value

20 20 20
20 20 20
55 40 30
25 20 15
25 20 15
75 60 45

800 800 900
800 800 900
800 800 900
800 800 900
800 800 900
800 800 900

150 150 150
130 150 150
310 280 220
180 170 170
166 160 170
430 340 270

4700 4800 6609
4700 4800 5400
4700 4800 5200
4700 4800 6609
4700 4800 4900
4700 4800 4800

330 320 350
350 360 380
710 600 490
450 370 400
420 400 420
900 800 600

9600 10700 16400
9600 9900 13690
9600 9700 13100
9600 10700 16400
9600 12100
9600 12000

2,62 3,20 3,50
2,65 3,20 3,50
2,99 3,64 3,84

0,55 0,65 0,85 0,92 1,05 1,37 1,19 1,34 1,67
0,37 0,48 0,73 0,92 l,oo 1,34 1,19 1,34 1,61

ACM Transactions on Database Systems, Vol. 2, No. 1, ivlarch 1977.

26 l R. Bayer and K. Unterauer

quire 20-25 percent fewer disk accesses than B*-trees. Compared to simple prefix
B-trees, prefix B-trees need about 2 percent fewer disk accesses.

Length oj separators. The average length of separators in simple prefix B-trees
was in all cases about 0.35 less than the theoretical values. The compression factor
in prefix B-trees corresponds with the theoretical results.

Numerical results. The numerical results listed in Table V were obtained in
building up B*-trees, simple prefix B-trees, and prefix B-trees by inserting n nodes
into an initially empty tree. In all cases a = 13 was chosen.

ACKNOWLEDGMENTS

We wish to thank Jim Gray and Mike Blasgen of IBM Research in San Jose for
valuable discussions and comments about this paper. We also thank the referees
for suggesting several important improvements to clarify the presentation of this
paper.

REFERENCES

Note. References [2, 31 are not cited in the text.

1. AUER, R. Schltisselkompressionen in B*-biiumen. Diplomarbeit, Tech. U. Miinohen,
Mtinchen, Germany, 1976.

2. BAYEB, R. Symmetric binary B-trees: Data structure and maintenance algorithms. A&
Znformatica 1 (1972), 29@306.

3. BAYER, R. Storage characteristics and methods for searching and addressing. Information
Processing 74, North-Holland Pub. Co., Amsterdam, 1974, pp. 446444.

4. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes.
Acta Znformatica 1, 3 (1972)) 173-189.

5. BAYER, R., AND METZGER, J.K. On the encipherment of search tress and random access
files. ACM Trans. DutabuseSyst. 1, 1 (March 1976), 37-52.

6. BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on B-trees. IBM Res. Rep.
RJ 1791, IBM Res. Lab., San Jose, Calif., May 1976.

7. BAYER, R., AND UNTERAUER, K. Prefix B-trees. IBM Res. Rep. RJ 1796, IBM Res. Lab.,
San Jose, Calif., June 1976.

8. KNUTH, D.E. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-
Wesley, Reading, Mass., 1972.

9. WAGNER, R.E. Indexing design considerations. IBM Syst. J. 4 (1973), 351-367.
10. WEDEKIND, H. On the selection of access paths in a data base system. In Data Base Man-

agement, J.W. Klimbie and K.L. Koffeman, Eds., North-Holland Pub. Co., Amsterdam,
1974, pp. 385-397.

Received June 1976; revised November 1976

ACM Transactions on Database Systems, Vol. 2, No. 1, March 1977.

