

Estimating Software Costs
This article describes the cost estimation lifecycle and a process to estimate
project volume.
Author: William Roetzheim
Co-Founder, Cost Xpert Group, Inc.

Estimating Software Costs
In extensive research of over 20,000 software development projects spanning 18
years, it is found that more projects are doomed from poor cost and schedule
estimates than they ever are from technical, political, or development team
problems. Yet, so few companies and individuals really understand that software
estimating can be a science, not just an art. It really is possible to accurately and
consistently estimate development costs and schedules for a wide range of
projects. This series of 4 articles will provide you the tools you need to
understand step-by-step approaches to estimating the cost and schedule for your
projects. Although there is a wide range of software cost estimating tools on the
market to help with this process, we will focus in this series of articles on
understanding the fundamental concepts. You will be able to implement the
concepts in these articles using nothing more complicated than a spreadsheet.

We’ll start with this article by covering the various methods of estimating the size
of a program (called program volume). We’ll discuss the traditional measures of
Lines of Code and Function Points, plus introduce other approaches. At the end
of this article, we’ll show you how to prepare a preliminary, unadjusted estimate
using this information.

Article 2, Project Cost Adjustments, covers the concept of project cost
adjustments for variations in the project environment. At the end of this article,
you will be able to create an accurate estimate of the time and cost required to
develop a new application.

Article 3, Dealing with Reuse, explains how to quantify the impact of software
reuse and commercial components/libraries on your estimate.

Finally, Article 4, Creating the Project Plan describes how to use your insight into
project cost and schedule to create a complete project plan.

The Estimating Lifecycle

First, it is important to recognize the limitations of software cost estimating at the
macro level. As shown in the following figure, the typical accuracy of cost
estimates varies based on the current software development stage. Early
uncertainty in the estimate is largely based on variances in the input parameters

 Page 1 of 6

to the estimate. Later uncertainty in the estimate is based on the variances of
the estimating models.

Initially, at the concept stage, you may be presented with a vague definition of
the project. Though the requirements may not yet be fully understood, the
general purpose of the new software can be recognized. At this point, estimates
with an accuracy of plus or minus fifty percent are typical for an experienced
estimator using informal techniques (i.e., historical comparisons, group
consensus, and so on).
M acro lifecycle:

Concept
Oriented
Estimate

Concept
Oriented
Estimate

Function
Oriented
Estimate

Implementation
Oriented
Estimate

Implementation
Oriented
Estimate

Typical Accuracies

+50% +25% +10%
Typical Cost Estimating Accuracies

FIGURE 1: MACRO LIFECYCLE

After the requirements are reasonably well understood, a function-oriented
estimate may be prepared. At that point, estimates with an accuracy of plus or
minus twenty-five percent are typical for an experienced estimator, using the
techniques described above.

Finally, after the detailed design is complete, an implementation-oriented
estimate may be prepared. This estimate is typically accurate within plus or
minus ten percent.

The key is to recognize the importance of periodic re-estimates throughout the
project lifecycle, thereby identifying problems early enough to take corrective
action.

Estimating Program Volume

The first step in preparing an estimate is to come up with an estimate of the
project volume. One measure of program volume is the number of Source Lines
of Code, or SLOC. A SLOC is a human written line of code that is not a blank
line or comment. Do not count the same line more than one time even if the
code is included multiple times in an application. We typically work with a related
number, thousands of SLOC, or KSLOC, when estimating. The Constructive
Cost Model, or COCOMO popularized SLOC as an estimating metric. The basic
COCOMO model and the new COCOMO II model remain the most common
estimating approaches.

 Page 2 of 6

Let’s jump ahead and look at how we can convert from the number of KSLOC to
an estimate for the project. We will then discuss approaches to estimating
KSLOC in more detail.

Let’s begin with the simplest estimate. If you are aware of the number of KSLOC
your developers must write, and you know the effort required per KSLOC, then
you could multiply these two numbers together to arrive at the person months of
effort required for your project. This concept is the heart of the estimating
models. The following table shows some common values that researchers have
found for this linear productivity factor.

Project Type Linear Productivity Factor
COCOMO II Default 3.13
Embedded development 3.60
E-Commerce development 3.08
Web development 2.51
Military development 3.97

OK, let’s apply this approach. Suppose we were going to build an e-commerce
system consisting of 15,000 lines of code. How many person months of effort
would this take using just this equation?

The answer is computed as follows:

Productivity * KSLOC = 3.08 * 15 = Effort = 46 Person-Months

If all of your projects are small, then you can use this basic equation.
Researchers have found, however, that productivity does vary with project size.
In fact, large projects are significantly less productive than small projects. The
probable causes are a combination of increased coordination and communication
time, plus more rework required due to misunderstandings.

This productivity decrease with increasing project size is factored in by raising
the number of KSLOC to a number greater than 1.0. This exponential factor then
penalizes large projects for decreased efficiency. The following table shows
some typical size penalty factors for various project types.

Project Type Exponential size penalty factor
COCOMO II Default 1.072
Embedded development 1.111
E-Commerce development 1.030
Web development 1.030
Military development 1.072

 Page 3 of 6

So, after we do a size penalty adjustment, how many person months of effort
would our 15,000 lines of code e-commerce system require? The answer is
computed as follows:

Productivity * KSLOCPenalty = 3.08 * 15 1.030
 = 3.08 * 16.27 = Effort
 = 50 Person-Months

OK, all of this is pretty straightforward. The next logical question is, “How do I
know my project will end up as 15,000 SLOC?”

There are two approaches to answering this question I will address in this article,
direct estimation and function points with backfiring. Using either approach, the
fundamental input variables are determined through expert opinion, often with
your developers as the experts. The Delphi technique is a good way to
crosscheck the input variables.

Normally, the first step in estimating the number of lines of code is to break the
project down into modules or some other logical grouping. For example, a very
high level breakdown might be front-end processes; middle-tier processes; and
database code. Your developers then use their experience building similar
systems to estimate the number of lines of code required.

We strongly recommend that you obtain three estimates for each input variable:
A best-case estimate; a worst-case estimate; and an expected case estimate.
With these three inputs, we can then calculate the mean and standard deviation
as follows:

6
expected)) (4 worst (best Mean ×++

=
EQUATION 1: CALCULATING THE MEAN

6
best) -(worst Deviation Standard =

EQUATION 2: CALCULATING THE STANDARD DEVIATION

The standard deviation is a measure of how much deviation can be expected in
the final number. For example, the mean plus three times the standard deviation
will ensure that there is a 99% probability that your project will come in under
your estimate.
For more information, refer to the outside reference Software Engineering and
Project Management, Boehm, B., IEEE Press, 1987.

 Page 4 of 6

Estimating Function Points

An alternative to direct SLOC estimating is to start with function points, then use
a process called backfiring to convert from function points to SLOC. Function
Points were first utilized by IBM as a measure of program volume. The idea is
simple. The program’s delivered functionality (and hence, cost) is measured by
the number of ways it must interact with the users.

To determine the number of Function Points, start by estimating the number of
external inputs, external interface files, external outputs, external queries, and
logical internal tables.

External inputs are largely your data entry screens. If a screen contains a tabbed
notebook or similar metaphor then each tab would count as a separate external
input. External interface files are file based inputs or outputs. Each record
format within the file, or in the case of XML, each data object type, would count
as a separate interface file even if residing in the same physical file. External
outputs are your reports. External queries are message or external function
based communication into or out of your application. Finally, logical internal
tables are the number of tables in the database assuming the database was 3rd
normal form or better.

To convert from these raw values into an actual count of function points, you
multiply the raw numbers by a conversion factor from the following table:

Raw Type Function Point Conversion Factor
External inputs 4
External interface files 7
External outputs 5
External queries 4
Logical internal tables 10

So, if we had a system consisting of 25 data entry screens, 5 interface files, 15
reports, 10 external queries, and 20 logical internal tables, how many function
points would we have?

The answer is computed as follows:

sFunctionPo int450)10*20()4*10()5*15()5*7()4*25(=++++

The only remaining step is to use backfiring to convert from function points to an
equivalent number of SLOC. This can be done using a table of language
equivalencies. Some common values are as follows:

 Page 5 of 6

 Page 6 of 6

Language SLOC per Function Point
C++ default 53
Cobol default 107
Delphi 5 18
HTML 4 14
Java 2 default 46
Visual Basic 6 24
SQL default 13

So, to implement the above project (450 function points) using Java 2 would
require approximately the following number of SLOC:

SLOC700,2046*450 =

And would require the following effort to implement, assuming that this was an e-
commerce system:

Productivity * KSLOCPenalty = 3.08 * 20.7 1.030
 = 3.08 * 22.67 = Effort
 = 70 Person-Months

As discussed in our article, there are also other approaches to calculating
equivalent SLOC from a higher-level input value. These other approaches
include Internet points, Domino points, and class-method points to name just a
few. All of them work in a fashion analogous to function points as just described.

In our next installment, Project Cost Adjustments, we will cover the concept of
project cost adjustments for variations in the project environment.

	Estimating Software Costs
	Estimating Software Costs
	The Estimating Lifecycle
	Estimating Program Volume
	Estimating Function Points

