

 Page 1 of 8

Project Cost Adjustments
This article describes how to make adjustments to a cost estimate for
environmental factors, schedule strategies and software reuse.
Author: William Roetzheim
Co-Founder, Cost Xpert Group, Inc.

Project Cost Adjustments
Research by Capers Jones has indicated that formal software cost estimating
techniques can roughly double the probability of your software project being
completed successfully, but few companies and individuals really understand that
software estimating can be a science, not just an art. It really is possible to
accurately and consistently estimate development costs and schedules for a
wide range of projects. This series of 4 articles provides you the tools you need
to understand step-by-step approaches to estimating the cost and schedule for
your projects. Although there is a wide range of software cost estimating tools on
the market to help with this process, we focus in this series of articles on
understanding the fundamental concepts. You will be able to implement the
concepts in these articles using nothing more complicated than a spreadsheet.

In our first article, estimating software costs, we covered the various methods of
estimating the size of a program (called program volume). We discussed the
traditional measures of Lines of Code and Function Points, plus introduced other
approaches. At the end of this article, we showed you how to prepare a
preliminary, unadjusted estimate using this information.

In this article, Project Cost Adjustments, we cover the concept of project cost
adjustments for variations in the project environment. At the end of this article,
you will be able to create an accurate estimate of the time and cost required to
develop a new application.

Next month’s article , Dealing with Reuse, explains how to quantify the impact of
software reuse and commercial components/libraries on your estimate.

Finally, Article 4, Creating the Project Plan describes how to use your insight into
project cost and schedule to create a complete project plan.

Adjusting for the Environment

Obviously, the size of the development effort (the program volume) will have a
significant impact on the project cost. In addition, your intuition probably tells you
those additional factors, such as the experience and capabilities of the
development team, also have a significant impact. In fact, the impact of factors
such as these can often result in fivefold or tenfold variations in development

 Page 2 of 8

efficiency, and hence cost. Luckily, there is a quantitative, methodical approach
to adjusting for these project- specific environmental factors.

Value of Environmental Adjustments

Project environmental factors can have a major influence over the development
efficiency of your team. Factors are rated using a scale of Very Low, Low,
Normal, High, Very High or Extra High.

Recall from last month that a project’s cost is adjusted up or down based on
inefficiencies associated with increasing project size. This is handled using an
exponent factor that acts on the total SLOC value. Nonlinear environmental
factors modify this inefficiency adjustment factor up or down.

Factor Very Low Nominal Extra High

Architecture/
Risk Resolution

.0423 .014 -.0284

Development Flexibility .0223 .002 -.0284
Precedentedness .0336 .0088 -.0284
Process Maturity .0496 0.018

4
-.0284

Team Cohesiveness .0264 .0045 -.0284

The correct value for all factors is summed, then added to the unadjusted factor
as presented last month.

Let’s take a simple example. In our previous installment we worked out the effort
to complete an e-commerce project consisting of 450 function points as follows:

Effort = Productivity * KSLOC Penalty = 3.08 * 20.7 1.030 = 3.08 * 22.67 = 70 Person
Month

The default project size inefficiency adjustment was 1.030 for e-commerce
projects. Suppose that this project was nominal for architecture/risk resolution,
development flexibility, and precedentedness but was very low for organizational
process maturity and very low for team cohesiveness.

The new size inefficiency adjustment factor would now be:

1308.10264.0496.0088.002.014.030.1 =+++++

 Page 3 of 8

The new calculated effort would now be:

Effort = Productivity * KSLOC Penalty = 3.08 * 20.7 1.1308 = 3.08 * 30.68 = 94.8
Person Month

There are also linear project environmental adjustment factors. Linear factors
adjust a project’s effort up or down in a linear fashion. For example:
� A value of 1.0 for an environmental factor means that the default equations

should apply.
� A value of 1.5 means that the default calculated cost increases by 50%.
� A value of 0.5 means that the default calculated cost decreases by 50%.

When using more than one linear environmental variable, the total adjustment is
determined by multiplying the adjustment contribution by each variable together.
The following table illustrates the magnitude of impact you may observe from
some the various linear environmental factors.

Factor Very Low Nominal Extra High

Analyst capability 1.42 1.00 0.71
Applications Experience 1.220 1.00 0.810
Language and Tool
experience

1.20 1.00 0.840

Personnel Continuity 1.29 1.00 0.81
Management capability 1.18 1.00 0.87
Management experience 1.11 1.00 0.90
Platform Experience 1.19 1.00 0.85
Programmer capability 1.34 1.00 0.76
Execution time constraint 1.00 1.00 1.63
Main storage constraint 1.00 1.00 1.46
Platform Volatility 0.870 1.00 1.300
Effective management tools 1.22 1.00 0.84
Multisite Development 1.22 1.00 0.80
Office ergonomics 1.19 1.00 0.82

 Page 4 of 8

Factor Very Low Nominal Extra High

Use of S/W Tools 1.17 1.00 0.78
Database size 0.90 1.00 1.28
Documentation Match
to Lifecycle

0.81 1.00 1.23

Internationalization 0.97 1.00 1.35
Product complexity 0.750 1.00 1.660
Required Reusability 0.95 1.00 1.24
Required Software Reliability 0.82 1.00 1.26
Graphics and multimedia 0.95 1.00 1.35
Legacy integration 1.00 1.00 1.18
Site security 0.92 1.00 1.40
Text content 0.94 1.00 1.16
Tool selection 0.95 1.00 1.14
Transaction loads 0.96 1.00 1.59
Web strategy 0.88 1.00 1.45

TABLE 1: IMPACT FROM ENVIRONMENTAL FACTORSRS

The numbers in the preceding table were empirically determined from extensive
work by Barry Boehm, Capers Jones, and others. They have been validated
against over 20,000 projects.

Let’s take a simple example. Our current effort estimate is 94.8 person months
of effort to deliver our 450-function point e-commerce system. Suppose that this
project was nominal in every way, except that our Programmer capability and
analyst capability were both extremely high. How much effort would be required
to implement this project?

We start by noticing that analyst capability adjustment will be 0.71 and the
programmer capability adjustment will be 0.76. The total effort can then be
calculated as:

94.8 Person-Months * 0.71 * 0.76 = 51.2 Person-Months

 Page 5 of 8

So far, we have described how to define the project volume and how to adjust for
the project development environment. The result will be an estimated effort.
Now, let’s look at how we convert this effort into an optimal schedule.

The approach is actually very similar to the approach we followed to arrive at the
estimated effort. For this calculation, we start with the estimated effort in terms of
person months. We raise that to a power, then multiply the result times a linear
factor. Although you can get relatively sophisticated when selecting or
calculating the correct values for the linear and non-linear parameter, a
reasonable approximately is to take the cube root of the effort (raise effort to
0.33), then to multiply the result times a value from the following table.

Project Type Schedule Multiple
COCOMO II Default 3.67
Embedded development 4.00
E-Commerce development 3.20
Web development 3.10
Military development 3.80

Continuing with our e-commerce project example, the computed optimal
schedule would be:

3.20 * 51.2 0.33 = 3.20 * 3.66 = 11.7 Months

Norden (see reference below) discovered that optimal project staffing for typical
projects that require communication and learning follows a Rayleigh distribution.
This curve ramps up relatively steeply, then trails off gradually, resulting in a
wave shape. Putnam (see reference below) confirmed that this result applied to
software development projects. Figure 4 shows the optimal staffing curve for a
hypothetical project. This characteristic curve is known as the Putnam-Norden-
Rayleigh, or PNR staffing curve.

Note: You might want to take a look at the following outside references:
� “Useful Tools for Project Management” in Management of

Production, Norden, P., , M.K. Starr, Ed., Baltimore, MD; Penguin
Books, 1970.

� “A general empirical solution to the macro software sizing and
estimation problem” , Putnam, L.; IEEE Transactions on Software
Engineering, Vol SE-4, No. 4,(July, 1978), pp. 345-361.

 Page 6 of 8

This computed optimal schedule includes all project phases through acceptance,
shown as t(d) in the following figure. In the case of e-commerce projects this
would normally include strategy, business process analysis, requirements,
design, implementation, and test. Deployment and maintenance effort is part of
the PNR staffing curves, but they fall after the computed delivery time.

FIGURE 1: PNR LIFECYCLE MODEL

Quite often you may be asked to adjust the schedule either to deliver the
completed code at an accelerated pace, or to stretch the schedule out to improve
efficiency. Any adjustment to the schedule will have a cost impact. Optimal
development time, or Td, is the development time that is optimal in terms of a
combination of development schedule and required resources. However, there
are a variety of reasons why you might want to develop your project using a
different schedule.

As shown in the figure, you can reduce costs by increasing development time up
to To, defined as the optimal development time in terms of cost. To has been
empirically determined to be twice Td and to result in a cost reduction of 50%. As
you increase the cost beyond To, the costs begin to climb again at roughly a
linear rate.

 Page 7 of 8

FIGURE 2: REDUCE COSTS, INCREASE DEVELOPMENT TIME

Although it is unusual for a project schedule to be pushed beyond Td, it is
common for software to be required prior to the time allowed by Td. Accelerating
the development schedule is possible, but the cost penalties are severe. As
shown in Figure, the costs climb exponentially as the project schedule is
accelerated.

Avoiding the Impossible Region

One interesting result of the study of over 750 projects that attempted to deliver
the code in less than Td, was the fact that none of the projects successfully
achieved a crashed schedule beyond .75 Td. Researchers noted this
phenomena and this barrier has become knows as the impossible region
because it is impossible to accelerate the schedule beyond this amount using
traditional development approaches.

Alternate Strategies for Accelerating Delivery

There are times when you simply must accelerate the schedule beyond that
allowed by the impossible region. When faced with this requirement, there are
four basic approaches to follow:
� Reduce Functionality

 Page 8 of 8

� Decouple Tasks
� Redundant Parallel Development
� Increase Reuse

Reduce Functionality

The best approach is to reduce functionality. In other words, scale back the
volume to be created (functionality) to reduce both cost and required schedule.

Decouple Tasks

The cost schedule curves are based on a single project with complex
interactions. If you decouple, you can increase parallelism and reduce both
schedule and cost. For example, if you can split one project into two that have
minimal and well-defined interactions, then both projects can be costed and
scheduled independently.

Redundant Parallel Development

True redundant parallel development can significantly decrease your schedule if
you have the resources (people and money) available. Basically, you assign
multiple teams to write the same component. The first team to finish has their
code used. The other code is either discarded or used as a back-up in case of
inefficiencies or bugs with the winner’s code. This can be repeated for each
program module. This approach works because you are exploiting the statistical
variances in development time among different independent teams.
Unfortunately, it is rare to have adequate skilled resources available to make this
approach effect on other than the most critical projects.

Increase Reuse

Increasing reuse can significantly lower your development schedule. This is the
true power of component based development environments such as Visual Age
Java, Delphi and Visual Basic. Factoring code reuse into your estimate of effort
and schedule is the topic of the next article in our series.

	Project Cost Adjustments
	Adjusting for the Environment
	Value of Environmental Adjustments
	Avoiding the Impossible Region
	Alternate Strategies for Accelerating Delivery
	Reduce Functionality
	Decouple Tasks
	Redundant Parallel Development
	Increase Reuse

